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Olefinic stereoselection in the [2,3]-Wittig rearrangement of
,B-disubstituted allylic ethers forming trisubstituted olefins

Katsuhiko Tomooka, Tatsuya Igarashi, Naoyuki Kishi and Takeshi Nakai *
Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan

Received 12 May 1999; revised 7 June 1999; accepted 11 June 1999

Abstract

The E/Z-selectivities in the [2,3]-Wittig rearrangements of secondary f-(methyl or silyl)allylic ethers are shown
to depend critically on the nature of groups on the carbanion terminus, thereby permitting elucidation of the
structural requirements for attaining high Z-selectivity. © 1999 Elsevier Science Ltd. All rights reserved.
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While the [2,3]-Wittig rearrangement of secondary allylic ethers generally exhibits a high E-selectivity
over the newly created olefin bond, several exceptions to the E-selection attribute have been reported, in
particular, with respect to «,B-disubstituted allylic ethers (Eg. 1).! The most notable is the Wlttlg—Snll
variant (G=H, R!=alkyl, R?=Me) which shows a remarkably high level (>95%) of Z-selection® and
hence has found applications for Z-trisubstituted olefin synthesis.! Another notable exception is the
rearrangement of the B-(silylallylic propargyl ether (G=C=CSiMe;, R!=pentyl, R?=SiMe3) which
provides 80% ‘Z’-selectivity,>* while the allyl counterpart (G=CH=CH>, R!=methy] or pentyl) shows
only 36-33% ‘Z’-selectivity.*> While these high Z-selectivities have been interpreted as a result of the
alleviation of the steric 1,2-repulsion between R! and R? in the transition states, these examples point
out that the nature of G group must be considered as another key factor in dictating the level of Z-
selectivity.® Thus, the question arises as to how the nature of the G group affects the E/Z-selectivity in
the [2,3]-Wittig rearrangement in general or what the requisite structural factors are for attaining high
Z-selectivity. Herein we wish to address this fundamental question based on the E/Z-selections observed
in the [2,3)-rearrangements of two types of o,B-disubstituted allylic ethers with different G groups.
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First, we examined the E/Z-selectivity in the Still-type rearrangement of the diastereomeric pair of the
methallylic ether 1a and 1b where the transmetallation proceeds with complete retention of configuration
and the Li-bearing terminus is configurationally stable’ (Egs. 2 and 3). Diastereo-defined substrates 1a
and 1b were obtained by column-chromatographic separation and the relative configuration was assigned
by '"H NMR comparison with an authentic (1R, 1'S)-enantiomer of 1b prepared via the reaction of
the mesylate of (R)-o-hydroxypropylstannane with the potassium salt of (R)-2-methyl-2-hepten-3-ol.”8
Thus, 1a was treated with n-BuLi in THF at —=78°C to give the (E)-olefin 2 as a single isomer in 76% yield,
whereas a similar rearrangement of 1b was much slower to give rise to an isomeric mixture (E:Z=24:76)
of 2 in 25% yield, along with 16% of the [1,2]-Wittig product 3.°
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These outcomes reveal that the introduction of ethyl as the G group to the original Still system (G=H)
no longer affords high Z-selectivity. This rather surprising observation suggests that a steric factor offered
by the Et group predominates over the steric 1,2-repulsion between Me and R. Between the two transition
states Ty(exo) and T, (endo) available for 1a,'? the former, despite the presence of the 1,2-repulsion,
might be sterically much more favorable because the latter suffers a 1,3-repulsion between Et and Me. For
the other diastereomer 1b, on the other hand, while both T3(exo) and T4(endo) are sterically disfavored,
the former being free of the 1,2-repulsion is more favorable, thus leading to the Z-selection. Thus, it
is safe to say that the present rearrangement proceeds preferentially through the exo-transition states,
either in the presence or absence of the 1,2-repulsion. That means that the exo-preference possessed
inherently by the Et group prevails as a stereo-directing factor over the 1,2-repulsion. In other words,
if the exo/endo complication is absent, the 1,2-steric repulsion would become the sole stereo-directing
factor, thus leading to high Z-selectivity. That is exactly the case of the original Still variant (G=H).
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Next, our attention was focused on E/Z-selection in the rearrangements of secondary B-(silylallylic
ethers 4 where the Li-bearing terminus is configurationally labile (Eq. 4). The ‘E/Z’-selectivities thus
observed are summarized in Table 1, along with the literature data for comparison. The most revealing is
that the use of silylethynyl as the G group provides a significantly higher Z-selectivity than those of the
vinylic ones (entry 2 vs. 8). Rather interestingly, the bulkiness of the B-silyl groups has little effect (entries
5-7). A remarkably high ‘Z’-selectivity was attained when G was a silylethynyl and R was a bulky
alkyl (entries 8 and 9). These trends are explicable by considering that the silylethynyl group is known
as one of the few G groups that possess endo-preference in the transition states, whereas the vinylic
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Table 1
The [2,3]-Wittig rearrangement of B-(silyl)allylic ethers?
SiR's SiR; SiR';
R\I/K _ RJK/L 7 @
0—-\ R
G HO™ "G HO” "G
"E"-5 *Z-5
4
Entry Substrate 4 Base Bz Yoyield
1 G=CH=CH,, R=Me, R’=Me LDCA‘ 64 :36 62
2 R=n-CH,, n-BuLi 67:33 78
3 G=C(Me)=CH,, R=Me,  R’=Me LDCA? 59:41 87
4 n-BuLi 95:5 35
5 G=C=CSiMe,, R=Me, R'=Me n-BuLi 46:54 98
6 R’=Et 44:56 9
7 R’=Ph 52:48 98
8 G=C=CSiMe,;, R=n-C,H,,, R’=Me n-BuLi 22:78 98
(20 : 80)°
9 G=C=CSiMe,;, R=i-Pr, R’=Me n-BuLi 1:99 87
10°  G=H (SuBu,, R=Me, R'=Me n-BuLi 1:99 99

® The reactions were carried out in THF at -78 °C. °The geometry was assigned by 'H NMR spectra on the basis of
the empirical rule for the olefinic protons’ peaks (refs. 5 and 11), and the ratio was determined by 'H NMR and/or GLC.
® Cited from ref. 5. ¢ Lithium dicyclohexylamide. ° Cited from ref. 3. {The “Z” geometry of the major product
was confirmed by its conversion to the corresponding Z-disubstituted olefin via protiodesilylation (refs. S and 11b). 4
Performed using Still’ s transmetallation method.

groups have exo-preference.!"12 Thus, it appears likely that the relatively high Z-selectivity observed with
G=C=CSIiR3 reflects the special situation where the endo-TS corresponding to T, (free of 1,2-repulsion)
prevails overwhelmingly over the other endo-TS corresponding to T4 (suffering 1,2-repulsion). Thus, it
is safe to conclude that a high Z-selectivity can be attained only when one employs G=H (where the
endo/exo complication is absent) or such G group as silylethynyl that possesses a large endo-preference
in the transition states. In other words, the E/Z-selectivity of the [2,3]-Wittig rearrangement in general
is determined by the balance between the magnitude of the 1,2-repulsion between R! and R? and the
exo/endo-preference of G-group used. The more endo-preference, the more Z-selectivity.

In summary, we have demonstrated that the E/Z-selectivity in the [2,3]-Wittig rearrangements of o, -
disubstituted allylic ethers depends critically upon the nature of G groups. Moreover, we have clarified
not only the mechanistic origin of the high Z-selectivity reported for the Wittig—Still variant (G=H) and
G=C=CSiMe;s, but also the requirements for attaining high Z-selectivity. Further work is in progress to
develop other Z-selective [2,3]-Wittig variants.
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